Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1790314.v1

ABSTRACT

Vaccines that are broadly cross-protective against current and future SARS-CoV-2 variants of concern (VOC) or across the sarbecoviruses subgenus remain a priority for public health. Virus neutralization is the best available correlate of protection. We used sera from cohorts of individuals vaccinated with two or three doses of RNA (BNT162b2) or inactivated SARS-CoV-2 (Coronavac or Sinopharm) vaccines with or without a history of previous SARS-CoV-2 or SARS-CoV-1 (in 2003) infection, to define the magnitude and breath of cross-neutralization in a multiplex surrogate neutralization assay based on virus spike receptor binding domain of multiple SARS-CoV-2 variants of concern (VOC), SARS-CoV-2 related bat and pangolin viruses, SARS-CoV-1 and related bat sarbecoviruses. SARS-CoV-2 or SARS-CoV-1 infection followed by BNT162b2 vaccine, Omicron BA.2 breakthrough infection following BNT162b2 vaccine or a third dose of BNT162b2 following two doses of BNT162b2 or CoronaVac elicited the highest and broadest neutralization across VOCs. Considering breadth and magnitude of neutralization across all sarbecoviruses, those infected with SARS-CoV-1 immunized with BNT162b2 outperformed all other combinations of infection and/or vaccination. These data may inform vaccine design strategies for generating broadly neutralizing antibodies to SARS-CoV-2 variants or across the sarbecovirus subgenus.

3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.01.22271696

ABSTRACT

Coronavirus disease 2019 (COVID 19) expresses a wide spectrum of disease severity. We investigated the profile of IgG and IgG subclass antibody responses to SARS CoV 2 in Tunisian patients with COVID 19 according to disease severity (86 patients with severe disease and 63 with mild to moderate disease). Two in house developed ELISA with excellent performance were used to test for antibodies to the nucleocapsid (N) protein and the receptor-binding domain of the spike antigen (S-RBD) of SARS CoV 2. IgG, IgG1 and IgG3 antibodies were significantly higher in patients with severe disease compared to non-severe disease. Antibodies to S-RBD or the N protein were dominated by IgG1 and IgG3 or IgG1/IgG3 and IgG2 subclasses respectively. In patients with severe disease, IgG antibodies' appearance to S RBD was delayed compared to the N protein. IgG subclass imbalance may reflect the pathophysiology of COVID 19 and may herald disease aggravation. This study brings information on the immune responses to SARS CoV 2 in North African patients and completes the picture drawn on COVID 19 in different African populations and worldwide.


Subject(s)
COVID-19 , Protein S Deficiency
4.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1331606.v1

ABSTRACT

SARS-CoV-2 Omicron subvariant BA.2 is increasing in some areas of the world and it is important to assess how well current vaccines may protect against this infection. BioNTech Pfizer (BNT162b2) and CoronaVac are widely used COVID-19 vaccines globally. We determined the 50% plaque reduction neutralization test (PRNT50) and PRNT90 antibody titres to BA.2 virus in sera (twenty each collected 3-5 weeks after third dose) from cohorts vaccinated with three doses of BNT162b2, three doses of CoronaVac, two doses of CoronaVac followed by a third dose of BNT162b2 and those convalescent from SARS-CoV-2 (ancestral virus) (143-196 days after infection). We compared the PRNT titres to BA.2 with titres to BA.1 and ancestral virus. We demonstrate that PRNT50 and PRNT90 antibody titres to BA.2 are markedly reduced compared with those to ancestral virus and reduced as much as was observed for BA.1 virus. Those vaccinated with three doses of BNT162b2 or vaccinated with two doses of CoronaVac and a third dose of BNT162b2 develop PRNT antibody titres above the protective threshold from symptomatic infection. Those vaccinated with three doses of CoronaVac fail to achieve protective levels of PRNT50 antibody to BA.2 subvariant of Omicron 3-5 weeks after vaccination.


Subject(s)
COVID-19
5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1207071.v1

ABSTRACT

Omicron, a novel SARS-CoV-2 variant has emerged and is rapidly becoming the dominant SARS-CoV-2 virus circulating globally. It is important to define reductions in virus neutralizing activity in serum of convalescent or vaccinated individuals to understand potential loss of protection from infection or re-infection. Two doses of BNT162b2 or CoronaVac vaccines provided little 50% plaque reduction neutralization test (PRNT 50 ) antibody immunity against the Omicron variant, even at one-month post vaccination. Booster doses with BNT162b2 in those with two doses of either BNT162b2 or CoronaVac provided acceptable neutralizing immunity against Omicron variant at 1-month post-booster dose. However, three doses of BNT162b2 elicited higher levels of PRNT 50 antibody to Omicron variant suggesting longer duration of protection. Convalescent from SARS-CoV-2 infection did not have protective PRNT 50 antibody levels to Omicron, but a single dose of BNT162b2 vaccine provided protective immunity. Field vaccine-efficacy studies against Omicron variant against different vaccines are urgently needed.


Subject(s)
COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.02.21265843

ABSTRACT

Background. Poor immunogenicity and antibody waning were found in vaccinees of CoronaVac. There is lack of randomized controlled trial (RCT) data to compare the immunogenicity and safety of schedules using homologous and heterologous vaccine as a booster dose. Methods. We randomly assigned adults who had received 2 doses of CoronaVac with low antibody response to receive an additional booster dose of either BNT162b2 or CoronaVac. The local and systemic adverse reactions were recorded. Levels of SARS-CoV-2 neutralizing and spike binding antibody in plasma were measured. Findings. At one month after the third dose of vaccine, BNT162b2 vaccines elicited significantly higher surrogate virus neutralizing test (sVNT), spike receptor binding, spike N terminal domain binding, spike S2 domain binding levels than CoronaVac. More participants from the BNT162b2 group reported injection site pain and swelling as well as fatigue and muscle pain than those who received CoronaVac as the third dose. The mean results of the sVNT against the wild type, beta, gamma and delta variants in the BNT162b2 boosted group was 96.83%, 92.29%, 92.51% and 95.33% respectively which were significantly higher than the CoronaVac boosted group (Wild type: 57.75%; Beta: 38.79 %; Gamma: 32.22%; Delta: 48.87%) Conclusion. Our RCT study shows that BNT162b2 booster dose for those people who poorly responded to the previous vaccination of CoronaVac is significantly more immunogenic than a CoronaVac booster. BNT162b2 also elicits higher levels of SARS-CoV-2 specific neutralizing antibodies to different variants of concern. The adverse reactions were only mild and short-lived.


Subject(s)
Pain , Myalgia , Fatigue , Edema
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.28.21265635

ABSTRACT

Background. Few head-to-head evaluations of immune responses to difference vaccines have been reported. Methods. Surrogate virus neutralization test (sVNT) antibody levels of adults receiving either 2 doses of BNT162b2 (n=366) or CoronaVac (n=360) vaccines in Hong Kong were determined. An age-matched subgroup (BNT162b2 (n=49) vs CoronaVac (n=49)) were tested for plaque reduction neutralizing (PRNT) and spike binding antibody and T cell reactivity in peripheral blood mononuclear cells (PBMC). Findings. One month after the second dose of vaccine, BNT162b2 elicited significantly higher PRNT50, PRNT90, sVNT, spike receptor binding, spike N terminal domain binding, spike S2 domain binding, spike FcR binding and antibody avidity levels than CoronaVac. The geometric mean PRNT50 titres in those vaccinated with BNT162b2 and CoronaVac vaccines were 251.6 and 69.45 while PRNT90 titres were 98.91 and 16.57, respectively. All of those vaccinated with BNT162b2 and 45 (91.8%) of 49 vaccinated with CoronaVac achieved the 50% protection threshold for PRNT90. Allowing for an expected seven-fold waning of antibody titres over six months for those receiving CoronaVac, only 16.3% would meet the 50% protection threshold versus 79.6% of BNT162b2 vaccinees. Age was negatively correlated with PRNT90 antibody titres. Both vaccines induced SARS-CoV-2 specific CD4+ and CD8+ T cell responses at 1-month post-vaccination but CoronaVac elicited significantly higher structural protein-specific CD4+ and CD8+ T cell responses. Conclusion. Vaccination with BNT162b2 induces stronger humoral responses than CoronaVac. CoronaVac induce higher CD4+ and CD8+ T cell responses to the structural protein than BNT162b2.


Subject(s)
COVID-19
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.22.21254079

ABSTRACT

Pulling vaccine efficacy and effectiveness (VE) outcomes from 17 reports of 9 different vaccine products and through sequence analysis, we found that genetic mismatch explained sizable variations in VE. The findings suggested the potential need of timely optimizing vaccine antigens as new dominant viral strains emerge.


Subject(s)
COVID-19
9.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3751051

ABSTRACT

COVID-19 patients show varying severity of the disease ranging from asymptomatic to requiring intensive care. Although a number of SARS-CoV-2 specific monoclonal antibodies have been identified, we still lack an understanding of the overall landscape of B-cell receptor (BCR) repertoires in COVID-19 patients. Here, we used high-throughput sequencing of bulk and plasma B-cells collected over multiple time points during infection to characterize signatures of B-cell response to SARS-CoV-2 in 19 patients. Using principled statistical approaches, we determined differential features of BCRs associated with different disease severity. We identified 38 significantly expanded clonal lineages shared among patients as candidates for specific responses to SARS-CoV-2. Using single-cell sequencing, we verified reactivity of BCRs shared among individuals to SARS-CoV-2 epitopes. Moreover, we identified natural emergence of a BCR with cross-reactivity to SARS-CoV-1 and SARS-CoV-2 in a number of patients. Our results provide important insights for development of rational therapies and vaccines against COVID-19. Funding: This work was supported by DFG grant (SFB1310) on Predictability in Evolution (A.N., Z.M., J.O., G.I.), the Max Planck Society through MPRG funding (A.N., Z.M., J.O., G.I.), Department of Physics at the University of Washington (A.N., Z.M.), Royalty Research Fund at the University of Washington (A.N., Z.M.), NIH NIAID F31AI150163 (WSD), Calmette and Yersin scholarship from the Pasteur International Network Association (H.L.), Bill and Melinda Gates Foundation OPP1170236 (I.A.W.), a startup fund at the University of Illinois at Urbana-Champaign (N.C.W.), US National Institutes of Health (contract no. HHSN272201400006C) (J.S.M.P), National Natural Science Foundation of China (NSFC)/Research Grants Council (RGC) Joint Research Scheme(N_HKU737/18) (C.K.P.M. and J.S.M.P) and the Research Grants Council of the Hong Kong Special Administrative Region, China (Project no. T11-712/19-N) (J.S.M.P). Conflict of Interest: The authors declare no competing interests.Ethical Approval: The study was approved by the institutional review board of the Hong Kong West Cluster of the Hospital Authority of Hong Kong (approval number: UW20-169).


Subject(s)
Lymphoma, B-Cell , COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.14.339465

ABSTRACT

Antigenic imprinting, which describes the bias of antibody response due to previous immune history, can influence vaccine effectiveness and has been reported in different viruses. Give that COVID-19 vaccine development is currently a major focus of the world, there is a lack of understanding of how background immunity influence antibody response to SARS-CoV-2. This study provides evidence for antigenic imprinting in Sarbecovirus, which is the subgenus that SARS-CoV-2 belongs to. Specifically, we sequentially immunized mice with two antigenically distinct Sarbecovirus strains, namely SARS-CoV and SARS-CoV-2. We found that the neutralizing antibodies triggered by the sequentially immunization are dominantly against the one that is used for priming. Given that the impact of the background immunity on COVID-19 is still unclear, our results will provide important insights into the pathogenesis of this disease as well as COVID-19 vaccination strategy.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.25.217158

ABSTRACT

Perfusion of convalescent plasma (CP) has demonstrated a potential to improve the pneumonia induced by SARS-CoV-2, but procurement and standardization of CP are barriers to its wide usage. Many monoclonal antibodies (mAbs) have been developed but appear insufficient to neutralize SARS-CoV-2 unless two or three of them are being combined. Therefore, heterologous polyclonal antibodies of animal origin, that have been used for decades to fight against infectious agents might represent a highly efficient alternative to the use of CP or mAbs in COVID-19 by targeting multiple antigen epitopes. However, conventional heterologous polyclonal antibodies trigger human natural xenogeneic antibody responses particularly directed against animal-type carbohydrate epitopes, mainly the N-glycolyl form of the neuraminic acid (Neu5Gc) and the Gal 1,3-galactose (Gal), ultimately forming immune complexes and potentially leading to serum sickness or allergy. To circumvent these drawbacks, we engineered animals lacking the genes coding for the cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) and 1,3-galactosyl-transferase (GGTA1) enzymes to produce glyco-humanized polyclonal antibodies (GH-pAb) lacking Neu5Gc and -Gal epitopes. We found that pig IgG Fc domains fail to interact with human Fc receptors and thereby should confer the safety advantage to avoiding macrophage dependent exacerbated inflammatory responses, a drawback possibly associated with antibody responses against SARS-CoV-2 or to avoiding a possible antibody-dependent enhancement (ADE). Therefore, we immunized CMAH/GGTA1 double knockout (DKO) pigs with the SARS-CoV-2 spike receptor-binding domain (RBD) to elicit neutralizing antibodies. Animals rapidly developed a hyperimmune response with anti-SARS-CoV-2 end-titers binding dilutions over one to a million and end-titers neutralizing dilutions of 1:10,000. The IgG fraction purified and formulated following clinical Good Manufacturing Practices, named XAV-19, neutralized Spike/angiotensin converting enzyme-2 (ACE-2) interaction at a concentration < 1g/mL and inhibited infection of human cells by SARS-CoV-2 in cytopathic assays. These data and the accumulating safety advantages of using glyco-humanized swine antibodies in humans warranted clinical assessment of XAV-19 to fight against COVID-19.


Subject(s)
COVID-19
12.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.13.20153114

ABSTRACT

COVID-19 patients show varying severity of the disease ranging from asymptomatic to requiring intensive care. Although a number of SARS-CoV-2 specific monoclonal antibodies have been identified, we still lack an understanding of the overall landscape of B-cell receptor (BCR) repertoires in COVID-19 patients. Here, we used high-throughput sequencing of bulk and plasma B-cells collected over multiple time points during infection to characterize signatures of B-cell response to SARS-CoV-2 in 19 patients. Using principled statistical approaches, we determined differential features of BCRs associated with different disease severity. We identified 38 significantly expanded clonal lineages shared among patients as candidates for specific responses to SARS-CoV-2. Using single-cell sequencing, we verified reactivity of BCRs shared among individuals to SARS-CoV-2 epitopes. Moreover, we identified natural emergence of a BCR with cross-reactivity to SARS-CoV-1 and SARS-CoV-2 in a number of patients. Our results provide important insights for development of rational therapies and vaccines against COVID-19.


Subject(s)
COVID-19
13.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2007.06762v2

ABSTRACT

COVID-19 patients show varying severity of the disease ranging from asymptomatic to requiring intensive care. Although a number of SARS-CoV-2 specific monoclonal antibodies have been identified, we still lack an understanding of the overall landscape of B-cell receptor (BCR) repertoires in COVID-19 patients. Here, we used high-throughput sequencing of bulk and plasma B-cells collected over multiple time points during infection to characterize signatures of B-cell response to SARS-CoV-2 in 19 patients. Using principled statistical approaches, we determined differential features of BCRs associated with different disease severity. We identified 38 significantly expanded clonal lineages shared among patients as candidates for specific responses to SARS-CoV-2. Using single-cell sequencing, we verified reactivity of BCRs shared among individuals to SARS-CoV-2 epitopes. Moreover, we identified natural emergence of a BCR with cross-reactivity to SARS-CoV-1 and SARS-CoV-2 in a number of patients. Our results provide important insights for development of rational therapies and vaccines against COVID-19.


Subject(s)
COVID-19
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.30.20085670

ABSTRACT

Background: The SARS-CoV-2 virus emerged in December 2019 and caused a pandemic associated with a spectrum of COVID-19 disease ranging from asymptomatic to lethal infection. Serology testing is important for diagnosis of infection, determining infection attack rates and immunity in the population. It also informs vaccine development. Although several serology tests are in use, improving their specificity and sensitivity for early diagnosis on the one hand and for detecting past infection for population-based studies, are priorities. Methods: We evaluated the anti-SARS-CoV-2 antibody profiles to 15 SARS-CoV-2 antigens by cloning and expressing 15 open reading frames (ORFs) in mammalian cells and screened antibody responses to them in COVID-19 patients using the Luciferase Immunoprecipitation System (LIPS). Results: The LIPS technique allowed us to detect antibody responses in COVID-19 patients to 11 of the 15 SARS-CoV-2 antigens tested, identifying novel immunogenic targets. This technique shows that antigens ORF3b and ORF8 allow detection of antibody early in infection in a specific manner and reveals the immuno-dominance of the N antigen in COVID-19 patients. Conclusion: Our report provides an unbiased characterization of antibody responses to a range of SARS-CoV-2 antigens. The combination of 3 SARS-CoV-2 antibody LIPS assays, i.e. N, ORF3b, and ORF8, is sufficient to identify all COVID-19 patients of our cohort even at early time-points of illness, whilst Spike alone fails to do so. Furthermore, our study highlights the importance of investigating new immunogens NSP1, ORF3b, ORF7a and ORF8 which may mediate immune functions other than neutralization which may be beneficial or harmful to the patient.


Subject(s)
Mastocytosis, Systemic , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL